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Abstract

Considering a cylindrical section of a tree subjected to loads independent of x3 as a relaxed Saint-Venant’s problem,
it was shown that plane sections remain plane. Since plane sections remain plane, the displacement equations for the
neutral fiber derived using either the relaxed Saint-Venant’s problem or elementary beam theory are equivalent. The
stresses in the plane of the transverse cross-section were found to equal to zero. Therefore, it is appropriate to use
elementary beam theory to estimate the three-dimensional stress functions when the wood is considered to be homo-
geneous. In addition the three-dimensional displacement equations allow the required elastic coefficients in cylindrical
coordinates to be measured from full size samples.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Elasticity; Anisotropy; Orthotropic; Wood; Cantilever beam

1. Introduction

This paper is the first of three papers that will consider the mechanical stresses in a cylindrical section of
the bole of a tree. Depending on the analysis that is being performed different constitutive equations may be
assumed for the wood in a tree. This paper will consider the wood to be homogeneous and orthotropic with
respect to the cylindrical coordinates, with the z-axis directed up the tree. In the second and third papers the
constitutive equations will depend on the radial coordinate r.

Fung (1965, p. 16) notes that problems such as wave propagation, oscillation, and contact problems may
be “beyond the scope of the elementary theory”” when considering anisotropic materials. Researchers in
forestry and wood science who require estimates of the stresses on planes other than the transverse cross-
section, need to know if elementary beam theory will provide adequate estimates of the stresses given an
assumed constitutive equation. In addition, Pyles et al. (1988) noted that the elastic properties for minor
specimens published by the American Society for Testing and Materials (ASTM) under estimated the
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stiffness of full size samples. Pyles et al. (1988) suggested that the preparation of the ASTM specimens might
reduce the stiffness of the specimens.

Lyons (1997) searched for the maximum shear stress in the bole of a tree subject to combined loading,
and found the maximum shear stress did not occur on the transverse cross-section. Elementary beam theory
provides estimates of the normal stress in the axial direction (Ss3), and the shear stresses (Sj3 and S3) on
the transverse cross-section. Consider the cylindrical section of a tree and the differential element shown in
Fig. 1.

If the x;-axis is directed up the tree then the normal vector on the transverse cross-section (X) is
n®) = (0,0,1), and the stress vector on X is

o S S S| |0 Si3
sP =8n" = 1Sy Sn Su||0] =583 (1)
S S Sn |l S33

In the following Greek indices range from 1 to 2, while Latin indices range from 1 to 3 unless otherwise
specified. Summation notation is used for repeated indices and a comma followed by a subscript will in-
dicate a partial derivative with respect to the indicated coordinate. In addition, the following special
functions will be used, the Kronecker delta function (J;;), and the two-dimensional alternator symbol (e,).

Elementary beam theory will provide estimates for the stresses required in (1.1). However, if the stress
vector is required on an arbitrary cross-section Q with normal vector n(? = nj@, then the stress vector on Q
is

s@ = §;n\? (1.2)

J
If S, = 0, then (1.2) becomes

NEL!
S(Q) = S23I’12 (13)

S3;n;

Elementary beam theory will provide estimates for the stresses required in Eq. (1.3); however, if S,; # 0,
then the stress vector on Q becomes

Syn;
S(Q) = SQA,-nA,- (14)
S3;n;

and elementary beam theory will not provide estimates for all the required stresses.

S33 A X1

X2

/ X2

X1

Fig. 1. Stresses acting on a transverse cross-section of a tree.
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Fig. 2. Axes of symmetry in a cylindrical section of a tree.
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Fig. 3. Cylindrical cantilever beam subject to loads independent of x;.

Consider a cylindrical section of a tree (Fig. 2). Bodig and Jayne (1993) describe a cylindrical section of a
tree as being an orthotropic material with cylindrical anisotropy, where the axes of symmetry are the long
axis z, the radial axis r, and the tangential axis . The problem considered in this paper is a cylindrical
section of a tree that is fixed at one end and subject to loads independent of x3 (Fig. 3). This paper has two
objectives. First, elastic theory will be used to determine if elementary beam theory is appropriate for es-
timating the three-dimensional stresses in a cylindrical section of a tree, for loads independent of x;. Second,
the displacement equations will be derived for a cylindrical section of a tree so that the elastic coefficients in
cylindrical coordinates may be measured on full size specimens.

2. Constitutive equations

The constitutive equations for a linear elastic material that is orthotropic in cylindrical coordinates are
(prime denotes basis in cylindrical coordinates)

S1{ i = C:{ 'kIE;cl
E’j = S’j s @1
ij = RijkIPkl
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where §}; is Cauchy’s stress tensor, £, is the infinitesimal strain tensor, Cj;, is the elasticity tensor, and S, is
the compliance tensor.
Note, in (2.1) the following constants must be equal to zero for an orthotropic material:

! o o o o o _

1123 = 1113 — 1112 — C2223 - C2213 - C2212 =0

! v o _ _ v _
C3323 - C3313 - C3312 - C2313 - C2312 - C1312 =0

(similarly for Sj;,)

Eq. (2.1) are tensor equations and so are valid under any proper transformation; however, it will be
necessary to take the derivatives of these equations. If Eq. (2.1) has a curvilinear basis, then on taking the
derivative with respect to a base vector the resulting differential will have a different set of base vectors from
the point where the derivative was taken (Charlier et al., 1992, p. 21). The resulting matrix is no longer a
tensor, and will have to be corrected in order to regain the original properties of the tensor equation. This
complication can be avoided if the constitutive equations are transformed to a rectilinear basis. Then the
base vectors are the same for all points in the domain and so taking the derivative of a tensor will result in a
tensor.

Lai et al. (1993, p. 221) give the transformation taking the fourth order tensor Cj;, from the €] basis to
the €] basis as,

Cijii = OniOnjOrk OsiCprs

. (2.2a)
Sijkl = QmianQerslSmnrs
Given (2.2a) the constitutive equations can be written in Cartesian coordinates
Sii = Gk, Eij=SijuSu (2.2b)

Here, Q;; is the second order tensor containing the direction cosines for the rotation of interest. To convert
the elasticity tensor or the compliance tensor from a cylindrical basis to a Cartesian basis Q;; would be

cos(f) —sin(0) 0
O; = | sin(f) cos(f) 0 (2.3)
0 0 1

where 0 is the cylindrical coordinate.

The rotation (2.3) takes the positive r-direction in cylindrical coordinates to the positive x;-direction in
Cartesian coordinates. For the complete list of transformation equations resulting from (2.2a), refer to
Appendix A. Recall for an orthotropic material there are only nine independent coefficients in the Cj;, and
S tensors. Appendix A shows that there are now 13 nonzero coefficients after transforming the Cj;, and
S tensors to Cartesian coordinates. In addition, the coefficients in the new Cj; and Sy tensors are no
longer constant; instead, they are now dependent on the cylindrical coordinate 0.

Let a cylindrical section of a tree be solid and orthotropic in cylindrical coordinates with constant co-
efficients, and let the x;-axis be an axis of symmetry that falls within the body. The cylindrical base vectors
e. and e, are not unique at » = 0, therefore, the constitutive equations must allow for nonunique strains in
these directions at » = 0. Lekhnitskii (1981, p. 69) notes if the compliance and elasticity coefficients are
constant then certain terms within the elasticity tensor or the compliance tensor must be equal.

The terms that must be equal are

’ o ' o ! _
Sllll - S22227 S1133 - S2233’ S2332 - S1313

! Y ! _ 4 —
Cllll - C2222’ C1133 - C22337 C2332 - C1313

Eq. (2.4) reduces the number of independent coefficients in (2.1) from nine to six.
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To view the change in dependence between the stresses and strains after the transformation (2.2a) the
constitutive equations can be written in Voigt notation when taking (2.4) and (A.1) into account, for ex-
ample

Shi Cin Cnun Cuzx 0 0  Cun Ey;
S Cin Coyn Cuz 0 0  Cun Ey
S| _ | Cusz Gz Cazz 0 0 0 Es3 2.5)
Sn3 0 0 0 Ca3n3 0 0 2E5; ’
Si3 0 0 0 0 Ciai3 0 2E ;3
Si2 Ciiz Copp 0 0 0  Cun] [2En
The coefficients in (2.5) have the following dependence
Ciin = Coxn = Ci1i(0),  Ciiza = Clyyy
C1133 = C2233 = C1133a C3333 = C§333 (26)

Crns = Ci313 = Chypy, Croin = Crana(0)
Ciiz = Ciina(0),  Crpp = Copa(0)

3. Problem statement

Iesan (1987) formulates a solution for a cylindrical cantilever beam with anisotropy that is dependent on
the x;- and x,-coordinates. When the elasticity and compliance tensors in (2.1) are transformed into the
Cartesian frame, they become functions of the x;- and x,-coordinates. Therefore, Iesan’s solution may be
used for the problem of a cylindrical section of a tree considered as a relaxed Saint-Venant’s problem.
Chirita (1979) uses lesan’s results to formulate the stress and displacement equations for a cylindrical
cantilever beam made of a material with constant coefficients in Cartesian coordinates. As will be seen the
simplifications resulting from (2.4) will allow a solution very similar to Chirita’s.

Consider a cylindrical section of a tree as a cantilever beam with constant cross-sections (Fig. 3). Let X
be the open cross-section at x; = 0, let 2, be the open cross-section at x3 = 4, and let 2~ be an arbitrary
cross-section with normal x;. The lateral surface of the cylinder will be I1, while the boundary of an ar-
bitrary cross-section is I.

The resultant loads applied to the cross-section at x; = 0 are the forces F and the moments M, the lateral
surface is unloaded, the cross-section at %, is fixed, and body loads will be ignored in this analysis. The
problem in Fig. 3 is of the class P, as defined by Iesan (1987), where the resultant loads acting on X are
independent of x3 and F, = 0.

Recall from (2.2a) that

Cijmr = Cijur(x1,x2), and Sy = Siju(x1,x2) (3.1)
The total displacements are
w = u; +ul (3.2)

where u; are the displacements resulting from strain, and »/ are displacements resulting from a rigid body
motion.
The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987), are

2

U = 0jy | — ai% + egyauxpxs| + 0nlayx, + azlxs + W (3.3)
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where a, are constants that will have to be determined using the boundary conditions, and W = W(x;,x,) is
a vector composed of the functions of integration.
The displacements resulting from a rigid body motion are
u11 = —WsXp + WpX3 + Ujo
Uy = Wx; — Wix3 + U (3.4)
u§ = WXy — WX + Uz
where w; are rotations about the x;-axes, and u,, are translations in the x;-directions.
Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary

conditions for a solution imply that the sum of the stress fields acting on X, must be in equilibrium with the
resultant loads acting on X

/22 Sya(u)da = —f,(u) =0, /22 Syy(u)da = —f3(u) = —F5

(3.5)
/ eaﬁxngﬂ(u) da = —I’}’l3(ll) = —M3, / XO(S33(U) dCl = 61/3711/3(ll) = eileﬁ
2, 2
Substituting (3.3) into the definition of the infinitesimal strain tensor, the resulting strains are
Ell(u) = VVI)I ) EZZ(“) = VV2727 E33(u) = (apxp + a}) (3 6)

Ey(u) = Yawx) + Wi, Ei(u) =i—am+ Wi, ], Epn(u) =W, +W,]

Consider the constitutive equations (2.2b). Substitute the strain tensor (3.6) into the constitutive equa-
tions, then the stress tensor in Cartesian coordinates becomes

Sij(u) = Cips(apx, + as) — asCizeupxp + T (W) (3.7)
The T;;(W) = Cijx, W, are the stresses resulting from the displacement vector W, which is independent of
x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T,(;") (p=1,2,3,4), which are defined by the
following equilibrium equations and boundary conditions:
T'ﬂ) (W)7a +(Cia33xﬁ);1 = 07 T(ﬁ) (W)nu = —Liu33XpNy

(
]:(3)(W);ac +(Ci133)50( == Oa Tl(3)(w)nx = — (330, (38)
(

o o
T',<4)(W);1 _epﬁ(ciap3x[i)7a = Oa T(g( >(W)n1 = epﬂciap3xﬁnc4

1 1

Here n is the unit normal to I'. The auxiliary problems combine as follows:
4
T;(W) =Y a,1," (W) (3.9)
p=1
After substituting the stresses (3.7) into the necessary conditions for a solution (3.5), and taking note

of the simplifications resulting from (2.5), the following system of equations can be found for determin-
ing a,:

fzz X%C.m} da f;z x1%,Cy333da fzz x1C3333da 0 a; G
fzz x1x,C3333da fzz X%Cms da fzz x,Cs333da 0 a | _ G, (3 10)
Jy,xiCxnda [{ x:Cypda [, Cyszzda 0 as Gs )

! 0 0 fxz [¥3Ca323 + X3C1313)da | @4 G,
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where
G, M, — f22x1T33da
G2 o M2 - f22X2T33d(1
G3 _F3_f22 T33da
G4 7M3—f22X1T32 +x2T31da

Recall from (2.6) that Ch33 = Ci313 = Chyy; and Ciazz = Chyq5, and that the integrals are taken over a
circular cross-section. Therefore, since Cj;;; and Cjy,; are constant, Eq. (3.10) becomes

C§3331 0 0 0 a G]
0 C33331 0 0 a | G2
0 0 Chpd 0 a |~ | G (3.11)
0 0 0 2C£323I dy G4

Here I is the moment of inertia, and 4 is the cross-sectional area. Since C}45, Cysy5, 1, and A4 are never zero,

then (3.11) uniquely defines a,,.

4. Generalized plane strain stresses T

Recall for generalized plane strain that E;; = Sjj, Tu,. Chirita (1979) notes this process must be revers-
ible, therefore, Ty = CyyEys. This results in Ej; = S ComnrsEys, and
(i=s,j=r=1)2
(i=rj=s)=1/2
(i=rj=si=sj=r)=1
all other 7, j,r,s = 0

1
Sijmn Cmnm = E [

For the auxiliary generalized plane strain problems, the stresses and strains are functions of the dis-
placement vector W(x;,x;)

TP (W) = CyuEY) (W)

(4.2)
EP/(W) = SyuT, (W)
Since W is independent of x; there is the following constraint on Eg’;) (W)
1 aW(P) aW(P)
E(p) W — 3 3 — 0 4.3
3 ( ) 2 [ 6x3 6x3 ( )
4.1. Functions for T;D
Set p =1 in (3.7) and (3.8), then the system of equations that defines T,-E”(W) is
T (W), +(Coasx1 ) = 0 (4.4)
7 (W)n, = —Cpazxin, (4.5)

Recall from (2.5) that Cy,3; = 0, therefore, let
Tl(]l) = —x1Cli33, T2(21> = —x1Cr33, T1<21) = —x1C233 =0, T1<31) = T2(31> =0 (4.6)
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It can be seen that the stress functions (4.6) satisfy (4.4) and (4.5). To obtain a function for 7 3<31 )(W) expand
(4.2) with i = j = 3, then

E(313) = S3311T1(1l) + 53322T2(21> + 53333T3(31> + 253312T1(21) =0 4.7)
Solve (4.7) for TS) and then substitute (4.6) into this,

X
T3(31> = S—l [S3311 C3311 + S3322C3320) (4.8)
3333
Recall from (4.1) that
$3311C1133 + 83322Co033 = 1 — 83333C333 (4.9)
Therefore,
x x
Ty = 1 = S5333Cxans] = —— — 11 C3333 (4.10)
83333 83333

The stress functions for the problems Tf) (W) and Tf) (W) can be found in a similar manner as for T;U(W).

4.2. Functions for Tf.;’)

Set p =4 in (3.7) and (3.8), then the system of equations that defines T[§-4> (W) is
T(4> (W)wc *eﬂﬁ(ciocﬂxﬁ)wc =0 (41 1)

io

io

Recall from (2.5) that C,,,3 = 0, and from (2.6) that Ci313 = Caz3 = C55y5. Let

W (W)ny, = e,5Ciyp3xph, (4.12)

4 4 4 4 4
Tl(l) = Tz(z) = TI(Z) = T1(3) = T2(3) =0 (4~13)

It is easily seen that (4.13) satisfies all the equations of (4.11) and the first two equations of (4.12).
Expanding the third equation of (4.12) and substituting in (4.13) results in

(4) @

Ty ny + T3y 'ny = Gapizxang — Capaxiig
/ v

Cogpyxant = Coppsxinn

Xony = XNy

rsin(0) cos(0) = rcos(0) sin(6)

Therefore, (4.13) also satisfies the third equation of (4.12). To obtain a function for Tg) (W) expand (4.2)
with i = j = 3 and substitute this into (4.3), then

E.(;;) = 53311711(?) + 53322T2(§> + S3333T3(§> + 253312711(? =0 (4.14)
Solve (4.14) for TS) and substitute (4.13) into this, then

T3(§> -0 (4.15)

4.3. Summarizing the generalized plane strain stresses Tfjp )

The stresses that are a function of W' are defined in Section 4.1. The stresses that are a function of W
or W® can be defined following methods similar to those shown in Section 4.1. The stresses that are a
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function of W were defined in Section 4.2. The four systems of stresses corresponding to the four dis-
placement vectors W) are as follows.
Consider W'; the corresponding stresses defined by (4.6) and (4.10) are

7)) = —xCuz, Ty = —x1Co
Ty = —xCiy, Ty =T} =0 (4.16)
Ty = x185353 — %1 Cs33

Consider W?; the corresponding stresses derived similarly as for w are

T1<12) = —x,C1133, Tz(zz) = —xCr33
2 2 2

TI(Z) = —XZC1233, T2(2) = 1(3> = 0 (417)
2 _

T3<3) = 185353 — 0C33

Consider W?; the corresponding stresses derived similarly as for W) are

T1<13) = —Chss, T2(23) =—Cyn
TS =—Ciys, T =75 =0 (4.18)

T35 = Shy — o
Consider W¥; the corresponding stresses from (4.13) and (4.15) are

4 4 4 4 4 4
T1<1) = T2<2) = T1(2> = T3(3) = Tl<3) = T2(3) =0 (4.19)

5. Forming the total stresses S; and determining the constants q,

To form the total stresses Sj;(u), it will be necessary to combine the auxiliary generalized plain strain
problems. Recall Eq. (3.9)

T;(W) = fjapTiﬁ”) (W) (3.9)

Substitute (4.16)—(4.19) into (3.9), then

Ty(W) = (a,x, + a3)[—Ciz + 6;30353353] (5.1)
Substitute (5.1) into (3.7) and cancel terms, then the stress tensor becomes

Sy(w) = —asCijmzenpxp + (a,x, + a3)5,-3513S3_3133 (5.2)

The coefficients in (5.2) can be determined by substituting (5.2) into the necessary conditions for a so-
lution (3.5). The first two equations in (3.5) are identically satisfied by (5.2) for all ay.
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Substitute (5.2) into the last four equations of (3.5), then
/ [ayx, + as]S;s,da = —F;
2

/ [asCso03x; + ayCap13x5] da = — M
. (5.3)

/ xi[ayx, + a3]Syy da = My
2

/ xala,x, + a3)Syy; da = —M,
2

Recall that 2, is a circular cross-section and that Ci313 = Cass = Chyy; and Sszzz = 55545, therefore,
solving (5.3) for a, results in

4 —4
a = WM2S§333a ay = WMISSM
—F3S —2M; 54
ar — —— a = ——
3 Rz Chyp3 R4

where R is the radius of the cross-section.
Substitute (5.4) into (5.2) then the stress tensor becomes

S]](ll) = O, Szz(ll) =0

2)(2M3
SIZ(u) = Oa S13(u) = R4 (55)
_le% 4.X'1M2 4X2M1 F?;
Sa(W) =— g SulW = — T TR

6. Forming the displacement equations resulting from strain

Substitute (2.2b) into (3.6) and recall that W = W(x;, x,), then

Ou
Ey(u) = a—l = Wi,1 = StuSu
X1
ou (6.1)
2
E =—= MW= S»us
22(“) ox, 252 22kI9k]
Substitute (5.5) into (6.1) and integrate to find W, and W,
ZX%MZ 4XZ)C1M1 x1F3
VVl(thz)ZSm,%[ R R aR + Ki(x2) 62)
4x2x1M2 2X§M1 )CZF} '
Wa(x1,x2) = Sx3 [7 ——r el K> (x1)
Substitute (6.2) into (3.3) fori =1, 2
2 2
_ X3 My dxoxiMy xiF3
Uy = =)o = a4 +Sn33[ R R R + K (x2) 63)
2 2 :
X3 4X2X1M2 2x2M1 X2F3
uy = —azz + agx1x3 + So33 [nR“ TR R + K> (x;)
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Recall the definition of Ej;(u) from (3.6) and substitute (6.2) into this
- @ul auz . 1 4x 4x2M2
E12(U) —5 |:a—)cz+a—xl:| ) R4
From (2.2b) Ej»(u) = Si2uSu, however, from (2.5) and (5.5) SiouSy = 0. Therefore, (6.4) becomes

4X1M1 4X2M2
TCR4 - 2233 TCR4

1
[ —asxs + S —p R LK ,2] 3 [614)63 + S2033 + K5, (6.4)

Ky +Ky, = {51133 (6.5)

Since K is only a function of x, and K, is only a function of x;, then from (6.5) K; and K, must be

23M.
K, = —522332742+L1
6.6
23M, (6.6)
K> = Suss e T L

where L; and L, are constants.
Recall from (4.16)—(4.19) that T2(§) = Tl(§) =0, also recall (2.2b) and (3.9), then

E(W) = 2853033 + 285313713
~ 0 0 (6.7)
Ex3(W) = 283 ZapT23 + 28513 Z a,T)5 =0
p=1 p=1

The W; component of the two-dimensional vector W(x;,x,) can be found by equating the definition of
the infinitesimal strains to (6.7)

E23(W):%[VVZ73 +VV372]:%VV372:0 (6 8)
Es(W) =W+, =i5,=0 .
Integrating both equations of (6.8) results in
W, =K
3= Ksln) (6.9)
Wy = Ky(x2)

Therefore, K3(x;) = K4(x2) = L; and L; is a constant.
The three-dimensional displacement equations resulting from strain can be found by substituting (6.6)
into (6.3) and (6.9) into (3.3) with i = 3. Recall (2.6) and the definitions of a, from (5.4), then

ng p 2M§S2323 2X%M2 4XZX1M1 x1F3 2X§M2
S A T 1] e TR TRy e T
ZX% p 2M3S£332 ’ 4x2x1M2 2X§M1 x2F3 foMl
U2 = e MiSsn = =R S | i~ T Tt e | TR (6.10)

4)C1M2 4)62M1 F3
e R T T R

7. Forming the total displacement equations

Recall the total displacements are given by (3.2)
u = u; +u! (3.2)
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Substitute (6.10) into (3.2)
2M 355323
nR*
2M3S§332
R4
4le2 4X2M1 R

=5; o T Ty X3 T WX — WXy + U3
B3| Rt aRY nR?

% - X%]Mg _ 4XZX1M1 _ )C]_Fé
R4 R4 R?

2x
0o_ /
Uy = — —=MrSy +

R } — W3Xy + WaXx3 + Uig

2[x
Xox3 + S;m [ [

e My 2[ — XMy x,F
XIX3+S;133|: j‘ERl4 2+ [ 17IR42] l%} + wix; — wixs + Uy

2X
0 3 !
u, = —MS -
2 TCR4 3333

(7.1)

where u;y = u;p + L;.
Recall from Fig. 3 that X, is fixed; this places the following constraints on the total displacements at
x = (0,0,h)

o

_6x3 _axl o

_auo_a_ug_

(7.2)

i

Substitute (7.1) into the first two equations of (7.2) for i =« = 1 at x = (0,0, #) and solve for w, and u,
then

4h

W2 = _M2S3333
mR? (7.3)
T

o = — g MaSs;

Substitute (7.1) into the first two equations of (7.2) fori = o« = 2 at x = (0,0, /) and solve for w; and uy,
then

—4h
w1 = TM1S§333 74
—2h? , (74)
Uz = R4 —r MiS333;

Substitute (7.1) into the first equation of (7.2) for i = 3 and the fourth equation of (7.2) at x = (0,0, %)
and solve for ws and wusg, then

2h
W3 = WM3S§323 7 s
P (75)
Uz = R2 —5 1353353

To form the total displacement equations substitute (7.3)—(7.5) into (7.1), then

M,S; 2M; S, 2Mo[x3 — %3] dxox My x F
0 _ 293333 2 2 392323 21X 2 2X14V 113
U === [2x3 — 4hx; + 2h7) + R [xaxs — hxo) + 875 { - — o

M, S 2M;S! 4xyx M. 2M[x2—x2] X F:

0 __ 3333 2 392332 241442 114 2 2173

= 4M+M]Tm““+m“5m[nm T

4x1M2 4X2M1 Fé 4.X'2 4.7(] F'3
= Suss R*  mR*  nR? x5+ S nR* RM R + nR? h

(7.6)
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To compare (7.6) to the displacement of the neutral fiber as given by elementary beam theory set
X1 =Xy = 0, then

M>S,
u}(0,0,x3) = — % (23 — 4hx; + 207
M, S,
u3(0,0,x3) = ﬁ [2x3 — dhxs + 207 (7.7)
S,
u3(0,0,x3) = % [h— x3)

8. Implications of using the relaxed Saint-Venant’s problem

In deriving (3.3) Iesan (1987) proved if u is a solution to the class of problems P; then u,; is also a
solution. The displacement u,; can be represented by the rigid body motion

uz=o+pxx (8.1)

where o and f are constant vectors.

In forming the problem in Fig. 3 as a relaxed Saint-Venant’s problem, the fixed condition on X, is re-
placed by a stress field that is in equilibrium with the resultant loads applied to X;. The removal of the fixed
condition on X, allows the nontrivial rigid body motion (8.1). If the fixed condition on X, were maintained
then there would only be the trivial rigid body motion

u3=a+pfxx=0 (8.2)

The infinitesimal strains are a function of the first partial derivatives of the displacements. Integrating
the rigid body motion (8.1) with respect to x3 results in the displacement field u being linear in x; and x,. In
addition, the displacement field u can be at most a function of the second power of x;, where the terms
containing x are independent of x; and x,. Therefore, the strains can at most be linear functions of x;, which
can be shown by substituting (5.4), (6.2), and (6.9) into (3.6). If the strains are linear in x;, then by (2.2b) and
(2.6) the stresses must be linear in x;, which is shown by (5.5).

Thus in posing the problem in Fig. 3 as a relaxed Saint-Venant’s problem, Iesan (1987) was effectively
assuming the strains, and therefore the stresses, to be linear in x;. The result of assuming the strains are
linear in x; is that plane sections remain plain for the material considered in this paper. Assuming plane
sections remain plane is one of the fundamental assumptions of elementary beam theory.

9. Conclusions

The displacements u’ given by (7.6) include displacement components in the plane of X, which are not
considered by elementary beam theory. The three-dimensional displacement equations can be used to
measure the compliance coefficients in cylindrical coordinates using full size specimens.

The relaxed Saint-Venant’s problem, for the material considered in this paper, results in plane sections
remaining plane. Since plane sections remain plane the displacement equations for the neutral fiber (7.7)
and the stress equations (5.5) are the same as those given by elementary beam theory. It was found for the
cylindrical section of a tree considered in this paper that S,; = 0. Therefore, by Eq. (1.3) it is appropriate to
use elementary beam theory to estimate the three-dimensional stresses for the problem considered in this

paper.
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Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates (Cj,,) to
Cartesian coordinates (Cjj)

_ 4 2Q2 2Q2 4 1
Cun = Ce 1+ 2C9S9 122 + 4C0S0 1212 T S0 2222
_ Q4o 2 Q2 2Q2 4 1
Con = Se i+ 2C0SH 122 T 4C0S0 1212 T C@ 2222
!
Cs33 = Ci3n3
Cyspz = S3C4 5 + C3C,
2323 = Pp 1313 02323
2 2
Ciiz = C9C1313 + Se 2323
22 ! ! ! ! 4 4 !
Con = CHSH[ 111 2C1122 + szzz - 2C1212] + [Ce + SH} 1212
22 4 ~1 2 Q2 4 ~1 2.2
Cin = C()So i Ca 122 — 4CaSa 212 T Su »i T C()S() 2222
2 2
Cusz = C0C1133 + Sv 2233

Cin=0

Ciiz=0

Cin = —GpSp [C; ;111 - Cé ;122 - 2C5 ;212 + 255 1212 + Sg ?122 - Sg 5222] (A'l)
Conzs = §5C) 133+ CoChyyy

Con3 =0

Cpiz=0

Coin = =Gy [S;Cim - Sﬁ l1122 - 25{3 ;212 + 2C§ /1212 + Cﬁ 1122 - Cg 3222]

Ci3 =0

C1i3=0

Gy = —CySp [ngn - ;322]

Cosis = —CoSo[Claps — Crans)
Cuip=0
Cii2=0

For the transformation equations taking the compliance coefficients in cylindrical coordinates (S; ) to
Cartesian coordinates (S;), replace lfjk, with Sj;, and Cyy with Sy in Eq. (A.1).
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