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Abstract

Considering a cylindrical section of a tree subjected to loads independent of x3 as a relaxed Saint-Venant’s problem,

it was shown that plane sections remain plane. Since plane sections remain plane, the displacement equations for the

neutral fiber derived using either the relaxed Saint-Venant’s problem or elementary beam theory are equivalent. The

stresses in the plane of the transverse cross-section were found to equal to zero. Therefore, it is appropriate to use

elementary beam theory to estimate the three-dimensional stress functions when the wood is considered to be homo-

geneous. In addition the three-dimensional displacement equations allow the required elastic coefficients in cylindrical

coordinates to be measured from full size samples.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is the first of three papers that will consider the mechanical stresses in a cylindrical section of
the bole of a tree. Depending on the analysis that is being performed different constitutive equations may be
assumed for the wood in a tree. This paper will consider the wood to be homogeneous and orthotropic with
respect to the cylindrical coordinates, with the z-axis directed up the tree. In the second and third papers the
constitutive equations will depend on the radial coordinate r.

Fung (1965, p. 16) notes that problems such as wave propagation, oscillation, and contact problems may
be ‘‘beyond the scope of the elementary theory’’ when considering anisotropic materials. Researchers in
forestry and wood science who require estimates of the stresses on planes other than the transverse cross-
section, need to know if elementary beam theory will provide adequate estimates of the stresses given an
assumed constitutive equation. In addition, Pyles et al. (1988) noted that the elastic properties for minor
specimens published by the American Society for Testing and Materials (ASTM) under estimated the
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stiffness of full size samples. Pyles et al. (1988) suggested that the preparation of the ASTM specimens might
reduce the stiffness of the specimens.

Lyons (1997) searched for the maximum shear stress in the bole of a tree subject to combined loading,
and found the maximum shear stress did not occur on the transverse cross-section. Elementary beam theory
provides estimates of the normal stress in the axial direction (S33), and the shear stresses (S13 and S23) on
the transverse cross-section. Consider the cylindrical section of a tree and the differential element shown in
Fig. 1.

If the x3-axis is directed up the tree then the normal vector on the transverse cross-section (R) is
nðRÞ ¼ ð0; 0; 1Þ, and the stress vector on R is

sðRÞ ¼ Sijn
ðRÞ
j ¼

S11 S12 S13
S21 S22 S23
S31 S32 S33

2
4

3
5 0

0
1

2
4

3
5 ¼

S13
S23
S33

2
4

3
5 ð1:1Þ

In the following Greek indices range from 1 to 2, while Latin indices range from 1 to 3 unless otherwise
specified. Summation notation is used for repeated indices and a comma followed by a subscript will in-
dicate a partial derivative with respect to the indicated coordinate. In addition, the following special
functions will be used, the Kronecker delta function (dij), and the two-dimensional alternator symbol (eab).

Elementary beam theory will provide estimates for the stresses required in (1.1). However, if the stress
vector is required on an arbitrary cross-section X with normal vector nðXÞ ¼ nðXÞ

j , then the stress vector on X
is

sðXÞ ¼ Sijn
ðXÞ
j ð1:2Þ

If Sab ¼ 0, then (1.2) becomes

sðXÞ ¼
S13n1
S23n2
S3jnj

2
4

3
5 ð1:3Þ

Elementary beam theory will provide estimates for the stresses required in Eq. (1.3); however, if Sab 6¼ 0,
then the stress vector on X becomes

sðXÞ ¼
S1jnj
S2jnj
S3jnj

2
4

3
5 ð1:4Þ

and elementary beam theory will not provide estimates for all the required stresses.

Fig. 1. Stresses acting on a transverse cross-section of a tree.
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Consider a cylindrical section of a tree (Fig. 2). Bodig and Jayne (1993) describe a cylindrical section of a
tree as being an orthotropic material with cylindrical anisotropy, where the axes of symmetry are the long
axis z, the radial axis r, and the tangential axis h. The problem considered in this paper is a cylindrical
section of a tree that is fixed at one end and subject to loads independent of x3 (Fig. 3). This paper has two
objectives. First, elastic theory will be used to determine if elementary beam theory is appropriate for es-
timating the three-dimensional stresses in a cylindrical section of a tree, for loads independent of x3. Second,
the displacement equations will be derived for a cylindrical section of a tree so that the elastic coefficients in
cylindrical coordinates may be measured on full size specimens.

2. Constitutive equations

The constitutive equations for a linear elastic material that is orthotropic in cylindrical coordinates are
(prime denotes basis in cylindrical coordinates)

S0
ij ¼ C0

ijklE
0
kl

E0
ij ¼ S0

ijklS
0
kl

ð2:1Þ

Fig. 2. Axes of symmetry in a cylindrical section of a tree.

Fig. 3. Cylindrical cantilever beam subject to loads independent of x3.
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where S0
ij is Cauchy’s stress tensor, E

0
ij is the infinitesimal strain tensor, C0

ijkl is the elasticity tensor, and S0
ijkl is

the compliance tensor.
Note, in (2.1) the following constants must be equal to zero for an orthotropic material:

C0
1123 ¼ C0

1113 ¼ C0
1112 ¼ C0

2223 ¼ C0
2213 ¼ C0

2212 ¼ 0

C0
3323 ¼ C0

3313 ¼ C0
3312 ¼ C0

2313 ¼ C0
2312 ¼ C0

1312 ¼ 0

ðsimilarly for S 0
ijklÞ

Eq. (2.1) are tensor equations and so are valid under any proper transformation; however, it will be
necessary to take the derivatives of these equations. If Eq. (2.1) has a curvilinear basis, then on taking the
derivative with respect to a base vector the resulting differential will have a different set of base vectors from
the point where the derivative was taken (Charlier et al., 1992, p. 21). The resulting matrix is no longer a
tensor, and will have to be corrected in order to regain the original properties of the tensor equation. This
complication can be avoided if the constitutive equations are transformed to a rectilinear basis. Then the
base vectors are the same for all points in the domain and so taking the derivative of a tensor will result in a
tensor.

Lai et al. (1993, p. 221) give the transformation taking the fourth order tensor C0
ijkl from the e0i basis to

the e0i basis as,

Cijkl ¼ QmiQnjQrkQslC0
mnrs

Sijkl ¼ QmiQnjQrkQslS0
mnrs

ð2:2aÞ

Given (2.2a) the constitutive equations can be written in Cartesian coordinates

Sij ¼ CijklEkl; Eij ¼ SijklSkl ð2:2bÞ

Here, Qij is the second order tensor containing the direction cosines for the rotation of interest. To convert
the elasticity tensor or the compliance tensor from a cylindrical basis to a Cartesian basis Qij would be

Qij ¼
cosðhÞ � sinðhÞ 0
sinðhÞ cosðhÞ 0
0 0 1

2
4

3
5 ð2:3Þ

where h is the cylindrical coordinate.
The rotation (2.3) takes the positive r-direction in cylindrical coordinates to the positive x1-direction in

Cartesian coordinates. For the complete list of transformation equations resulting from (2.2a), refer to
Appendix A. Recall for an orthotropic material there are only nine independent coefficients in the C0

ijkl and
S0
ijkl tensors. Appendix A shows that there are now 13 nonzero coefficients after transforming the C0

ijkl and
S0
ijkl tensors to Cartesian coordinates. In addition, the coefficients in the new Cijkl and Sijkl tensors are no
longer constant; instead, they are now dependent on the cylindrical coordinate h.

Let a cylindrical section of a tree be solid and orthotropic in cylindrical coordinates with constant co-
efficients, and let the x3-axis be an axis of symmetry that falls within the body. The cylindrical base vectors
er and eh are not unique at r ¼ 0, therefore, the constitutive equations must allow for nonunique strains in
these directions at r ¼ 0. Lekhnitskii (1981, p. 69) notes if the compliance and elasticity coefficients are
constant then certain terms within the elasticity tensor or the compliance tensor must be equal.

The terms that must be equal are

S0
1111 ¼ S0

2222; S0
1133 ¼ S0

2233; S0
2332 ¼ S0

1313

C0
1111 ¼ C0

2222; C0
1133 ¼ C0

2233; C0
2332 ¼ C0

1313

ð2:4Þ

Eq. (2.4) reduces the number of independent coefficients in (2.1) from nine to six.
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To view the change in dependence between the stresses and strains after the transformation (2.2a) the
constitutive equations can be written in Voigt notation when taking (2.4) and (A.1) into account, for ex-
ample

S11
S22
S33
S23
S13
S12

2
6666664

3
7777775
¼

C1111 C1122 C1133 0 0 C1112

C1122 C2222 C2233 0 0 C2212

C1133 C2233 C3333 0 0 0
0 0 0 C2323 0 0
0 0 0 0 C1313 0

C1112 C2212 0 0 0 C1212

2
6666664

3
7777775

E11

E22

E33

2E23

2E13

2E12

2
6666664

3
7777775

ð2:5Þ

The coefficients in (2.5) have the following dependence

C1111 ¼ C2222 ¼ C1111ðhÞ; C1122 ¼ C0
1122

C1133 ¼ C2233 ¼ C0
1133; C3333 ¼ C0

3333

C2323 ¼ C1313 ¼ C0
2323; C1212 ¼ C1212ðhÞ

C1112 ¼ C1112ðhÞ; C2212 ¼ C2212ðhÞ

ð2:6Þ

3. Problem statement

Iesan (1987) formulates a solution for a cylindrical cantilever beam with anisotropy that is dependent on
the x1- and x2-coordinates. When the elasticity and compliance tensors in (2.1) are transformed into the
Cartesian frame, they become functions of the x1- and x2-coordinates. Therefore, Iesan’s solution may be
used for the problem of a cylindrical section of a tree considered as a relaxed Saint-Venant’s problem.
Chirita (1979) uses Iesan’s results to formulate the stress and displacement equations for a cylindrical
cantilever beam made of a material with constant coefficients in Cartesian coordinates. As will be seen the
simplifications resulting from (2.4) will allow a solution very similar to Chirita’s.

Consider a cylindrical section of a tree as a cantilever beam with constant cross-sections (Fig. 3). Let R1

be the open cross-section at x3 ¼ 0, let R2 be the open cross-section at x3 ¼ h, and let R be an arbitrary
cross-section with normal x3. The lateral surface of the cylinder will be P, while the boundary of an ar-
bitrary cross-section is C.

The resultant loads applied to the cross-section at x3 ¼ 0 are the forces F and the momentsM, the lateral
surface is unloaded, the cross-section at R2 is fixed, and body loads will be ignored in this analysis. The
problem in Fig. 3 is of the class P1 as defined by Iesan (1987), where the resultant loads acting on R are
independent of x3 and Fa ¼ 0.

Recall from (2.2a) that

Cijkl ¼ Cijklðx1; x2Þ; and Sijkl ¼ Sijklðx1; x2Þ ð3:1Þ
The total displacements are

u0i ¼ ui þ uIi ð3:2Þ
where ui are the displacements resulting from strain, and uIi are displacements resulting from a rigid body
motion.

The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987), are

ui ¼ dia

�
� aa

x23
2
þ ebaa4xbx3

�
þ di3½aqxq þ a3	x3 þ Wi ð3:3Þ
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where ap are constants that will have to be determined using the boundary conditions, and W ¼ Wðx1; x2Þ is
a vector composed of the functions of integration.

The displacements resulting from a rigid body motion are

uI1 ¼ �w3x2 þ w2x3 þ u10
uI2 ¼ w3x1 � w1x3 þ u20
uI3 ¼ w1x2 � w2x1 þ u30

ð3:4Þ

where wi are rotations about the xi-axes, and ui0 are translations in the xi-directions.
Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary

conditions for a solution imply that the sum of the stress fields acting on R2 must be in equilibrium with the
resultant loads acting on R1Z

R2

Sa3ðuÞda ¼ �faðuÞ ¼ 0;

Z
R2

S33ðuÞda ¼ �f3ðuÞ ¼ �F3Z
R2

eabxaS3bðuÞda ¼ �m3ðuÞ ¼ �M3;

Z
R2

xaS33ðuÞda ¼ eabmbðuÞ ¼ eabMb

ð3:5Þ

Substituting (3.3) into the definition of the infinitesimal strain tensor, the resulting strains are

E11ðuÞ ¼ W1;1 ; E22ðuÞ ¼ W2;2 ; E33ðuÞ ¼ ðaqxq þ a3Þ

E23ðuÞ ¼ 1
2
½a4x1 þ W3;2 	; E13ðuÞ ¼ 1

2
½�a4x2 þ W3;1 	; E12ðuÞ ¼ 1

2
½W1;2 þW2;1 	

ð3:6Þ

Consider the constitutive equations (2.2b). Substitute the strain tensor (3.6) into the constitutive equa-
tions, then the stress tensor in Cartesian coordinates becomes

SijðuÞ ¼ Cij33ðaqxq þ a3Þ � a4Cija3eabxb þ TijðWÞ ð3:7Þ
The TijðWÞ ¼ CijkaWk;a are the stresses resulting from the displacement vector W, which is independent of

x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T ðpÞ

ij (p ¼ 1; 2; 3; 4), which are defined by the
following equilibrium equations and boundary conditions:

T ðbÞ
ia ðWÞ;a þðCia33xbÞ;a ¼ 0; T ðbÞ

ia ðWÞna ¼ �Cia33xbna

T ð3Þ
ia ðWÞ;a þðCia33Þ;a ¼ 0; T ð3Þ

ia ðWÞna ¼ �Cia33na

T ð4Þ
ia ðWÞ;a �eqbðCiaq3xbÞ;a ¼ 0; T ð4Þ

ia ðWÞna ¼ eqbCiaq3xbna

ð3:8Þ

Here n is the unit normal to C. The auxiliary problems combine as follows:

TijðWÞ ¼
X4

p¼1

apT
ðpÞ
ij ðWÞ ð3:9Þ

After substituting the stresses (3.7) into the necessary conditions for a solution (3.5), and taking note
of the simplifications resulting from (2.5), the following system of equations can be found for determin-
ing ap: R

R2
x21C3333 da

R
R2
x1x2C3333 da

R
R2
x1C3333 da 0R

R2
x1x2C3333 da

R
R2
x22C3333 da

R
R2
x2C3333 da 0R

R2
x1C3333 da

R
R2
x2C3333 da

R
R2
C3333 da 0

0 0 0
R

R2
½x21C2323 þ x22C1313	da

2
6664

3
7775

a1
a2
a3
a4

2
664

3
775 ¼

G1

G2

G3

G4

2
664

3
775 ð3:10Þ
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where

G1

G2

G3

G4

2
664

3
775 ¼

M1 �
R

R2
x1T33 da

M2 �
R

R2
x2T33 da

�F3 �
R

R2
T33 da

�M3 �
R

R2
x1T32 þ x2T31 da

2
6664

3
7775

Recall from (2.6) that C2323 ¼ C1313 ¼ C0
2323 and C3333 ¼ C0

3333, and that the integrals are taken over a
circular cross-section. Therefore, since C0

3333 and C0
2323 are constant, Eq. (3.10) becomes

C0
3333I 0 0 0
0 C0

3333I 0 0
0 0 C0

3333A 0
0 0 0 2C0

2323I

2
664

3
775

a1
a2
a3
a4

2
664

3
775 ¼

G1

G2

G3

G4

2
664

3
775 ð3:11Þ

Here I is the moment of inertia, and A is the cross-sectional area. Since C0
3333, C

0
2323, I , and A are never zero,

then (3.11) uniquely defines ap.

4. Generalized plane strain stresses Tij

Recall for generalized plane strain that Eij ¼ SijmnTmn. Chirita (1979) notes this process must be revers-
ible, therefore, Tkl ¼ CklrsErs. This results in Eij ¼ SijmnCmnrsErs, and

SijmnCmnrs ¼
1

2
½dirdjs þ dijdjr	 ¼

ði ¼ s; j ¼ rÞ ) 1=2
ði ¼ r; j ¼ sÞ ) 1=2
ði ¼ r; j ¼ s; i ¼ s; j ¼ rÞ ) 1
all other i; j; r; s ) 0

8>><
>>: ð4:1Þ

For the auxiliary generalized plane strain problems, the stresses and strains are functions of the dis-
placement vector W(x1; x2)

T ðpÞ
ij ðWÞ ¼ CijklE

ðpÞ
kl ðWÞ

EðpÞ
ij ðWÞ ¼ SijklT

ðpÞ
kl ðWÞ

ð4:2Þ

Since W is independent of x3; there is the following constraint on EðpÞ
33 ðWÞ

EðpÞ
33 ðWÞ ¼ 1

2

oW ðpÞ
3

ox3

"
þ oW ðpÞ

3

ox3

#
¼ 0 ð4:3Þ

4.1. Functions for T
ð1Þ
ij

Set p ¼ 1 in (3.7) and (3.8), then the system of equations that defines T ð1Þ
ij ðWÞ is

T ð1Þ
ia ðWÞ;a þðCia33x1Þ;a ¼ 0 ð4:4Þ

T ð1Þ
ia ðWÞna ¼ �Cia33x1na ð4:5Þ

Recall from (2.5) that C1233 ¼ 0, therefore, let

T ð1Þ
11 ¼ �x1C1133; T ð1Þ

22 ¼ �x1C2233; T ð1Þ
12 ¼ �x1C1233 ¼ 0; T ð1Þ

13 ¼ T ð1Þ
23 ¼ 0 ð4:6Þ
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It can be seen that the stress functions (4.6) satisfy (4.4) and (4.5). To obtain a function for T ð1Þ
33 ðWÞ expand

(4.2) with i ¼ j ¼ 3, then

Eð1Þ
33 ¼ S3311T

ð1Þ
11 þ S3322T

ð1Þ
22 þ S3333T

ð1Þ
33 þ 2S3312T

ð1Þ
12 ¼ 0 ð4:7Þ

Solve (4.7) for T ð1Þ
33 and then substitute (4.6) into this,

T ð1Þ
33 ¼ x1

S3333
½S3311C3311 þ S3322C3322	 ð4:8Þ

Recall from (4.1) that

S3311C1133 þ S3322C2233 ¼ 1� S3333C3333 ð4:9Þ

Therefore,

T ð1Þ
33 ¼ x1

S3333
½1� S3333C3333	 ¼

x1
S3333

� x1C3333 ð4:10Þ

The stress functions for the problems T ð2Þ
ij ðWÞ and T ð3Þ

ij ðWÞ can be found in a similar manner as for T ð1Þ
ij ðWÞ.

4.2. Functions for T
ð4Þ
ij

Set p ¼ 4 in (3.7) and (3.8), then the system of equations that defines T ð4Þ
ij ðWÞ is

T ð4Þ
ia ðWÞ;a �eqbðCiaq3xbÞ;a ¼ 0 ð4:11Þ

T ð4Þ
ia ðWÞna ¼ eqbCiaq3xbna ð4:12Þ

Recall from (2.5) that Ccaq3 ¼ 0, and from (2.6) that C1313 ¼ C2323 ¼ C0
2323. Let

T ð4Þ
11 ¼ T ð4Þ

22 ¼ T ð4Þ
12 ¼ T ð4Þ

13 ¼ T ð4Þ
23 ¼ 0 ð4:13Þ

It is easily seen that (4.13) satisfies all the equations of (4.11) and the first two equations of (4.12).
Expanding the third equation of (4.12) and substituting in (4.13) results in

T ð4Þ
31 n1 þ T ð4Þ

32 n2 ¼ C3113x2n1 � C3223x1n2
C0

2323x2n1 ¼ C0
2323x1n2

x2n1 ¼ x1n2
r sinðhÞ cosðhÞ ¼ r cosðhÞ sinðhÞ

Therefore, (4.13) also satisfies the third equation of (4.12). To obtain a function for T ð4Þ
33 ðWÞ expand (4.2)

with i ¼ j ¼ 3 and substitute this into (4.3), then

Eð4Þ
33 ¼ S3311T

ð4Þ
11 þ S3322T

ð4Þ
22 þ S3333T

ð4Þ
33 þ 2S3312T

ð4Þ
12 ¼ 0 ð4:14Þ

Solve (4.14) for T ð4Þ
33 and substitute (4.13) into this, then

T ð4Þ
33 ¼ 0 ð4:15Þ

4.3. Summarizing the generalized plane strain stresses T
ðpÞ
ij

The stresses that are a function of Wð1Þ are defined in Section 4.1. The stresses that are a function of Wð2Þ

or Wð3Þ can be defined following methods similar to those shown in Section 4.1. The stresses that are a
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function of Wð4Þ were defined in Section 4.2. The four systems of stresses corresponding to the four dis-
placement vectors WðpÞ are as follows.

Consider Wð1Þ; the corresponding stresses defined by (4.6) and (4.10) are

T ð1Þ
11 ¼ �x1C1133; T ð1Þ

22 ¼ �x1C2233

T ð1Þ
12 ¼ �x1C1233; T ð1Þ

23 ¼ T ð1Þ
13 ¼ 0

T ð1Þ
33 ¼ x1S�1

3333 � x1C3333

ð4:16Þ

Consider Wð2Þ; the corresponding stresses derived similarly as for Wð1Þ are

T ð2Þ
11 ¼ �x2C1133; T ð2Þ

22 ¼ �x2C2233

T ð2Þ
12 ¼ �x2C1233; T ð2Þ

23 ¼ T ð2Þ
13 ¼ 0

T ð2Þ
33 ¼ x2S�1

3333 � x2C3333

ð4:17Þ

Consider Wð3Þ; the corresponding stresses derived similarly as for Wð1Þ are

T ð3Þ
11 ¼ �C1133; T ð3Þ

22 ¼ �C2233

T ð3Þ
12 ¼ �C1233; T ð3Þ

23 ¼ T ð3Þ
13 ¼ 0

T ð3Þ
33 ¼ S�1

3333 � C3333

ð4:18Þ

Consider Wð4Þ; the corresponding stresses from (4.13) and (4.15) are

T ð4Þ
11 ¼ T ð4Þ

22 ¼ T ð4Þ
12 ¼ T ð4Þ

33 ¼ T ð4Þ
13 ¼ T ð4Þ

23 ¼ 0 ð4:19Þ

5. Forming the total stresses Sij and determining the constants ap

To form the total stresses SijðuÞ, it will be necessary to combine the auxiliary generalized plain strain
problems. Recall Eq. (3.9)

TijðWÞ ¼
X4

p¼1

apT
ðpÞ
ij ðWÞ ð3:9Þ

Substitute (4.16)–(4.19) into (3.9), then

TijðWÞ ¼ ðaqxq þ a3Þ½�Cij33 þ di3dj3S�1
3333	 ð5:1Þ

Substitute (5.1) into (3.7) and cancel terms, then the stress tensor becomes

SijðuÞ ¼ �a4Cija3eabxb þ ðaqxq þ a3Þdi3dj3S�1
3333 ð5:2Þ

The coefficients in (5.2) can be determined by substituting (5.2) into the necessary conditions for a so-
lution (3.5). The first two equations in (3.5) are identically satisfied by (5.2) for all a4.
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Substitute (5.2) into the last four equations of (3.5), thenZ
R2

½aqxq þ a3	S�1
3333 da ¼ �F3Z

R2

½a4C3223x21 þ a4C3113x22	da ¼ �M3Z
R2

x1½aqxq þ a3	S�1
3333 da ¼ M2Z

R2

x2½aqxq þ a3	S�1
3333 da ¼ �M1

ð5:3Þ

Recall that R2 is a circular cross-section and that C1313 ¼ C2323 ¼ C0
2323 and S3333 ¼ S0

3333, therefore,
solving (5.3) for ap results in

a1 ¼
4

pR4
M2S0

3333; a2 ¼
�4

pR4
M1S0

3333

a3 ¼
�F3S0

3333

pR2
; a4 ¼

�2M3

C0
2323pR4

ð5:4Þ

where R is the radius of the cross-section.
Substitute (5.4) into (5.2) then the stress tensor becomes

S11ðuÞ ¼ 0; S22ðuÞ ¼ 0

S12ðuÞ ¼ 0; S13ðuÞ ¼
2x2M3

pR4

S23ðuÞ ¼
�2x1M3

pR4
; S33ðuÞ ¼

4x1M2

pR4
� 4x2M1

pR4
� F3

pR2

ð5:5Þ

6. Forming the displacement equations resulting from strain

Substitute (2.2b) into (3.6) and recall that W ¼ Wðx1; x2), then

E11ðuÞ ¼
ou1
ox1

¼ W1;1 ¼ S11klSkl

E22ðuÞ ¼
ou2
ox2

¼ W2;2 ¼ S22klSkl

ð6:1Þ

Substitute (5.5) into (6.1) and integrate to find W1 and W2

W1ðx1; x2Þ ¼ S1133
2x21M2

pR4

�
� 4x2x1M1

pR4
� x1F3

pR2

�
þ K1ðx2Þ

W2ðx1; x2Þ ¼ S2233
4x2x1M2

pR4

�
� 2x22M1

pR4
� x2F3

pR2

�
þ K2ðx1Þ

ð6:2Þ

Substitute (6.2) into (3.3) for i ¼ 1, 2

u1 ¼ �a1
x23
2
� a4x2x3 þ S1133

2x21M2

pR4

�
� 4x2x1M1

pR4
� x1F3

pR2

�
þ K1ðx2Þ

u2 ¼ �a2
x23
2
þ a4x1x3 þ S2233

4x2x1M2

pR4

�
� 2x22M1

pR4
� x2F3

pR2

�
þ K2ðx1Þ

ð6:3Þ
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Recall the definition of E12ðuÞ from (3.6) and substitute (6.2) into this

E12ðuÞ ¼
1

2

ou1
ox2

�
þ ou2

ox1

�
¼ 1

2

�
� a4x3 þ S1133

4x1M1

pR4
þ K1;2

�
þ 1

2
a4x3

�
þ S2233

4x2M2

pR4
þ K2;1

�
ð6:4Þ

From (2.2b) E12ðuÞ ¼ S12klSkl, however, from (2.5) and (5.5) S12klSkl ¼ 0. Therefore, (6.4) becomes

K1;2 þK2;1 ¼ S1133
4x1M1

pR4

� �
� S2233

4x2M2

pR4

� �
ð6:5Þ

Since K1 is only a function of x2 and K2 is only a function of x1, then from (6.5) K1 and K2 must be

K1 ¼ �S2233
2x22M2

pR4
þ L1

K2 ¼ S1133
2x21M1

pR4
þ L2

ð6:6Þ

where L1 and L2 are constants.
Recall from (4.16)–(4.19) that T ðpÞ

23 ¼ T ðpÞ
13 ¼ 0, also recall (2.2b) and (3.9), then

E23ðWÞ ¼ 2S2323T23 þ 2S2313T13

E23ðWÞ ¼ 2S2323
X4

p¼1

apT
ðpÞ
23 þ 2S2313

X4

p¼1

apT
ðpÞ
13 ¼ 0

ð6:7Þ

The W3 component of the two-dimensional vector Wðx1; x2Þ can be found by equating the definition of
the infinitesimal strains to (6.7)

E23ðWÞ ¼ 1
2
½W2;3 þW3;2 	 ¼ 1

2
W3;2 ¼ 0

E13ðWÞ ¼ 1
2
½W1;3 þW3;1 	 ¼ 1

2
W3;1 ¼ 0

ð6:8Þ

Integrating both equations of (6.8) results in

W3 ¼ K3ðx1Þ
W3 ¼ K4ðx2Þ

ð6:9Þ

Therefore, K3ðx1Þ ¼ K4ðx2Þ ¼ L3 and L3 is a constant.
The three-dimensional displacement equations resulting from strain can be found by substituting (6.6)

into (6.3) and (6.9) into (3.3) with i ¼ 3. Recall (2.6) and the definitions of ap from (5.4), then

u1 ¼ � 2x23
pR4

M2S0
3333 þ

2M3S0
2323

pR4
x2x3 þ S0

1133

2x21M2

pR4

�
� 4x2x1M1

pR4
� x1F3

pR2
� 2x22M2

pR4

�
þ L1

u2 ¼
2x23
pR4

M1S0
3333 �

2M3S0
2332

pR4
x1x3 þ S0

1133

4x2x1M2

pR4

�
� 2x22M1

pR4
� x2F3

pR2
þ 2x21M1

pR4

�
þ L2

u3 ¼ S0
3333

4x1M2

pR4

�
� 4x2M1

pR4
� F3

pR2

�
x3 þ L3

ð6:10Þ

7. Forming the total displacement equations

Recall the total displacements are given by (3.2)

u0i ¼ ui þ uIi ð3:2Þ
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Substitute (6.10) into (3.2)

u01 ¼ � 2x23
pR4

M2S0
3333 þ

2M3S0
2323

pR4
x2x3 þ S0

1133

2½x21 � x22	M2

pR4

�
� 4x2x1M1

pR4
� x1F3

pR2

�
� w3x2 þ w2x3 þ u10

u02 ¼
2x23
pR4

M1S0
3333 �

2M3S0
2332

pR4
x1x3 þ S0

1133

4x2x1M2

pR4

�
þ 2½x21 � x22	M1

pR4
� x2F3

pR2

�
þ w3x1 � w1x3 þ u20

u03 ¼ S0
3333

4x1M2

pR4

�
� 4x2M1

pR4
� F3

pR2

�
x3 þ w1x2 � w2x1 þ u30

ð7:1Þ
where ui0 ¼ ui0 þ Li.

Recall from Fig. 3 that R2 is fixed; this places the following constraints on the total displacements at
x ¼ ð0; 0; hÞ

u0i ¼
ou0a
ox3

¼ ou02
ox1

¼ 0 ð7:2Þ

Substitute (7.1) into the first two equations of (7.2) for i ¼ a ¼ 1 at x ¼ ð0; 0; hÞ and solve for w2 and u10,
then

w2 ¼
4h
pR4

M2S0
3333

u10 ¼
�2h2

pR4
M2S0

3333

ð7:3Þ

Substitute (7.1) into the first two equations of (7.2) for i ¼ a ¼ 2 at x ¼ ð0; 0; hÞ and solve for w1 and u20,
then

w1 ¼
�4h
pR4

M1S0
3333

u20 ¼
�2h2

pR4
M1S0

3333

ð7:4Þ

Substitute (7.1) into the first equation of (7.2) for i ¼ 3 and the fourth equation of (7.2) at x ¼ ð0; 0; hÞ
and solve for w3 and u30, then

w3 ¼
2h
pR4

M3S0
2323

u30 ¼
h

pR2
F3S0

3333

ð7:5Þ

To form the total displacement equations substitute (7.3)–(7.5) into (7.1), then

u01 ¼ �M2S0
3333

pR4
½2x23 � 4hx3 þ 2h2	 þ 2M3S0

2323

pR4
½x2x3 � hx2	 þ S0

1133

2M2½x21 � x22	
pR4

�
� 4x2x1M1

pR4
� x1F3

pR2

�

u02 ¼
M1S0

3333

pR4
½2x23 � 4hx3 þ 2h2	 � 2M3S0

2332

pR4
½x1x3 þ hx1	 þ S0

1133

4x2x1M2

pR4

�
þ 2M1½x21 � x22	

pR4
� x2F3

pR2

�

u03 ¼ S0
3333

4x1M2

pR4

�
� 4x2M1

pR4
� F3

pR2

�
x3 þ S0

3333

4x2
pR4

M1

�
� 4x1

pR4
M2 þ

F3
pR2

�
h

ð7:6Þ
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To compare (7.6) to the displacement of the neutral fiber as given by elementary beam theory set
x1 ¼ x2 ¼ 0, then

u01ð0; 0; x3Þ ¼ �M2S0
3333

pR4
½2x23 � 4hx3 þ 2h2	

u02ð0; 0; x3Þ ¼
M1S0

3333

pR4
½2x23 � 4hx3 þ 2h2	

u03ð0; 0; x3Þ ¼
F3S0

3333

pR2
½h� x3	

ð7:7Þ

8. Implications of using the relaxed Saint-Venant’s problem

In deriving (3.3) Iesan (1987) proved if u is a solution to the class of problems P1 then u;3 is also a
solution. The displacement u;3 can be represented by the rigid body motion

u;3 ¼ a þ b � x ð8:1Þ

where a and b are constant vectors.
In forming the problem in Fig. 3 as a relaxed Saint-Venant’s problem, the fixed condition on R2 is re-

placed by a stress field that is in equilibrium with the resultant loads applied to R1. The removal of the fixed
condition on R2 allows the nontrivial rigid body motion (8.1). If the fixed condition on R2 were maintained
then there would only be the trivial rigid body motion

u;3 ¼ a þ b � x ¼ 0 ð8:2Þ

The infinitesimal strains are a function of the first partial derivatives of the displacements. Integrating
the rigid body motion (8.1) with respect to x3 results in the displacement field u being linear in x1 and x2. In
addition, the displacement field u can be at most a function of the second power of x3, where the terms
containing x23 are independent of x1 and x2. Therefore, the strains can at most be linear functions of xi, which
can be shown by substituting (5.4), (6.2), and (6.9) into (3.6). If the strains are linear in xi, then by (2.2b) and
(2.6) the stresses must be linear in xi, which is shown by (5.5).

Thus in posing the problem in Fig. 3 as a relaxed Saint-Venant’s problem, Iesan (1987) was effectively
assuming the strains, and therefore the stresses, to be linear in xi. The result of assuming the strains are
linear in xi is that plane sections remain plain for the material considered in this paper. Assuming plane
sections remain plane is one of the fundamental assumptions of elementary beam theory.

9. Conclusions

The displacements u0 given by (7.6) include displacement components in the plane of R, which are not
considered by elementary beam theory. The three-dimensional displacement equations can be used to
measure the compliance coefficients in cylindrical coordinates using full size specimens.

The relaxed Saint-Venant’s problem, for the material considered in this paper, results in plane sections
remaining plane. Since plane sections remain plane the displacement equations for the neutral fiber (7.7)
and the stress equations (5.5) are the same as those given by elementary beam theory. It was found for the
cylindrical section of a tree considered in this paper that Sab ¼ 0. Therefore, by Eq. (1.3) it is appropriate to
use elementary beam theory to estimate the three-dimensional stresses for the problem considered in this
paper.
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Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates (C0
ijkl) to

Cartesian coordinates (Cijkl)

C1111 ¼ C4
hC

0
1111 þ 2C2

hS
2
hC

0
1122 þ 4C2

hS
2
hC

0
1212 þ S4

hC
0
2222

C2222 ¼ S4
hC

0
1111 þ 2C2

hS
2
hC

0
1122 þ 4C2

hS
2
hC

0
1212 þ C4

hC
0
2222

C3333 ¼ C0
3333

C2323 ¼ S2
hC

0
1313 þ C2

hC
0
2323

C1313 ¼ C2
hC

0
1313 þ S2

hC
0
2323

C1212 ¼ C2
hS

2
h C0

1111

�
� 2C0

1122 þ C0
2222 � 2C0

1212

�
þ C4

h

�
þ S4

h

�
C0

1212

C1122 ¼ C2
hS

2
hC

0
1111 þ C4

hC
0
1122 � 4C2

hS
2
hC

0
1212 þ S4

hC
0
2211 þ C2

hS
2
hC

0
2222

C1133 ¼ C2
hC

0
1133 þ S2

hC
0
2233

C1123 ¼ 0

C1113 ¼ 0

C1112 ¼ �ChSh C2
hC

0
1111

�
� C2

hC
0
1122 � 2C2

hC
0
1212 þ 2S2

hC
0
1212 þ S2

hC
0
1122 � S2

hC
0
2222

�
C2233 ¼ S2

hC
0
1133 þ C2

hC
0
2233

C2223 ¼ 0

C2213 ¼ 0

C2212 ¼ �ChSh S2
hC

0
1111

�
� S2

hC
0
1122 � 2S2

hC
0
1212 þ 2C2

hC
0
1212 þ C2

hC
0
1122 � C2

hC
0
2222

�
C3323 ¼ 0

C3313 ¼ 0

C3312 ¼ �ChSh C0
3311

�
� C0

3322

�
C2313 ¼ �ChSh C0

1313

�
� C0

2323

�
C2312 ¼ 0

C1312 ¼ 0

ðA:1Þ

For the transformation equations taking the compliance coefficients in cylindrical coordinates (S0
ijkl) to

Cartesian coordinates (Sijkl), replace C0
ijkl with S0

ijkl and Cijkl with Sijkl in Eq. (A.1).
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